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a b s t r a c t

As one of the most promising new energy sources today, ocean current energy has become an
important part of energy strategies. There are short-term disorderly fluctuations in the flow rate of
ocean current energy. The uncontrolled input of kinetic energy from the ocean current can lead to
poor quality of power generated by current energy generators. The existing technology of current
energy generation uses mechanical rigid transmission, which is prone to fatigue damage and low
reliability under variable load fluctuations. In this paper, a joint simulation platform based on AMESim
and Simulink is constructed based on 50kW hydraulic transmission and control power generation
equipment. This paper establishes a mathematical model of the hydraulic transmission control system
and proposes a constant frequency control algorithm based on a deep learning prediction model to
improve the steady-state accuracy of the hydraulic motor speed. This paper proposes a deep learning
prediction model based on EWT (Empirical Wavelet Transform)-LSTM (Long Short-Term Memory)-
CNN(Convolutional Neural Network), which improves the prediction accuracy by 12.26% compared to
short-term memory neural network. The model improves the motor speed dynamic accuracy by 90%,
the standard deviation index by 78.11%, and the maximum deviation by 86.10% compared to the feed-
forward Proportional Integral Derivative (PID)control algorithm. Therefore, the model can effectively
improve the quality of the system’s power generation. At the same time, the time cost of the model
for a single prediction is less than the sampling time of other control algorithms. In this paper, the
simulation results are verified by a 50kW hydraulic transmission control experimental bench. The
constant frequency control algorithm based on the deep learning prediction model can effectively
improve the constant frequency dynamic accuracy of the motor of the hydraulic transmission control
power generation equipment, which in turn improves the system power generation quality.

© 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

In recent years, the world’s economy has grown at a rapid pace
ith the continuous advancement of technology. The demand for
nergy has also become stronger in various countries (Wang et al.,
021; Li et al., 2022b,a). In the International Energy Agency (IEA)
eference example, renewable energy sources are anticipated to
enerate roughly 29.2 percent of the world’s net power in 2040,
aking them the source of electricity with the quickest rate of
rowth (Qadir et al., 2021). As a result, researchers around the
orld are striving to find alternative sources of clean, renewable
nergy (Nasr Esfahani et al., 2022; Zhang et al., 2022).
Ocean current energy is an important form of ocean energy.

he energy density of ocean current energy is high, about four
imes that of wind energy and 30 times that of solar energy (Kim
t al., 2012; Djama Dirieh et al., 2022).
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There is some fluctuation in the flow rate of ocean current
energy, which generally varies in a disorderly manner. Many
researchers have made predictions about the energy of ocean
currents. Liu et al. proposed a deep learning model based on
weighted pure attention mechanism for ocean current with the
first attempt to use the weighted pure attention mechanism to
improve the ocean current prediction performance (Liu et al.,
2022). Using a simulation experiment for an observation sys-
tem, Jacobs et al. illustrate that the separation of confined and
unconstrained characteristic scales is governed by time–space
observation coverage (Jacobs et al., 2021).

The principle of current energy generation is similar to that of
wind power, and al-most any wind turbine can be converted into
a current energy generator (Nachtane et al., 2020a). Similar to
how wind energy uses local tidal currents, ocean current energy
does the same, as shown in Fig. 1 (Nachtane et al., 2020b). The ki-
netic energy of flowing water is captured with this method using
ocean current energy converters like ocean currents turbines. The
turbine dynamic model was created by Jiang et al. using the Blade
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Fig. 1. Ocean current energy converters. (a) twin turbine horizontal axis device. (b) cross-flow device. (c) vertical axis device. (design by National Renewable Energy
Laboratory).
Element Momentum (BEM) theory and Bernoulli’s principle. They
also resolve the form parameters of the turbine blades using the
nonlinear optimization approach, and trial production of the light
arc and NACA airfoil blades at low flow rates follows Jiang et al.
(2021). Utilizing a rotor model customized to the Moroccan po-
tential and the Blade Element Momentum, Hazim et al. performed
a thorough analysis of the hydrodynamic stresses of a three-blade
horizontal-axis marine turbine. For a turbine, they computed
the hydrodynamic stresses, estimated the energy performance,
and chose the ideal blade specifications. Hazim et al. (2020). In
summary, current energy turbines are currently the main method
of capturing current energy, but the speed of current energy
turbines is influenced by the flow rate of current energy.

Ocean current energy may be complicated by turbulence. As
result, there may also be considerable short-term variations in
urrent speed, which are disordered and cannot be accurately
redicted. Generators traditionally require high-speed unidirec-
ional drives, which may be constant or variable speed. Zhang
t al. examined the impact of ocean current turbines powered
y Doubly Fed Induction Generators (DFIG) on a distribution
etwork when the grid’s voltage is imbalanced. According to
heir research, DFIG ocean current turbines can deliver effective
amping, and modern DFIG ocean current power plants with
ower electronics and low-voltage ride-through capability can
aintain connections to weak electrical grids even in the pres-
nce of unbalanced voltage conditions without compromising
ystem stability (Zhang et al., 2017). In summary, the short-term
isorderly variation of the current energy flow rate leads to the
isorderly variation of the turbine speed, which in turn affects the
nergy conversion and power generation quality of the current
nergy. The current technical research has not yet achieved stable
ontrol of turbine speed under disorderly changes in current
nergy.
Hydraulic transmission and control power generation systems

re widely used in the field of wind power generation and ocean
urrent energy generation. The use of hydraulic transmission for
he conversion of ocean current energy, replacing the traditional
earbox, has the advantages of stepless speed regulation, ab-
orption of load fluctuations and flexible connections, which can
mprove the reliability of the system.

Variable frequency pump-controlled motor speed control sys-
em using single neuron adaptive PID control has faster response
haracteristics and good dynamic characteristics. Variable fre-
uency pump-controlled motor speed control systems have a
ood dynamic response to the system flow output using a com-
ound control method with load feedforward compensated PID
eedback. Conventional control algorithms are in practice due to
he existence of linear drift in the proportional amplifier and the
oor repeatability accuracy, resulting in the actual output value
13825
of the traditional algorithm constantly changing, leading to large
feed-forward errors at different hydraulic pump speeds. However,
deep learning has been less studied in relation to quantitative
pump-variable motor speed control systems.

In response to the above problems, this paper studies and
analyzes a deep learning control algorithm-based hydraulic drive
control power generation system for ocean cur-rent energy,
which is suitable for low current energy generation systems
with disorderly variations. This hydraulic drive control system
uses a volume pump-variable motor as a stepless speed control
system. A constant frequency control algorithm based on a deep
learning prediction model is developed in this paper. The paper
analyzes the mathematical model of the hydraulic transmission
and control power generation system and uses the deep learn-
ing prediction model to predict the effect of changes in ocean
current flow rate on the motor speed. This paper improves the
constant-frequency dynamic accuracy by correcting the feed-
forward control amount through a compensation controller. A
combined EWT-LSTM-CNN deep learning prediction model is
investigated in this paper, with an accuracy improvement of
12.26% compared to the LSTM neural network. The paper verifies
the simulation results based on a 50 Kw experimental bench, and
the algorithm is effective in improving the constant frequency
accuracy of the power generation unit and hence the quality of
power generation.

2. Theory and method

This paper focuses on the analysis of an ocean current energy
generation system, which simulates disordered ocean current en-
ergy by means of a frequency converter, as shown in Fig. 2. In this
paper, the hydraulic system part of the power generation system
is accurately controlled based on deep learning algorithms, which
in turn enables the dynamic accuracy control of the hydraulic
motor speed. To investigate the dynamic performance of the
system, this paper designs a constant frequency control algo-
rithm to achieve a constant motor speed to improve the quality
of the power generation. The following mathematical model of
the hydraulic transmission and control system is developed for
simulation and analysis in this paper.

2.1. Mathematical models for hydraulic systems

Firstly, it is assumed that there is no pressure drop in the
oil circuit and that the parameters in each line are consistent.
Secondly, it is assumed that there are no leaks throughout the
hydraulic system and that the effect of the charging system is
ignored. Finally, it is assumed that the oil is incompressible and
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Fig. 2. Flow chart of hydraulic power generation system for ocean current energy (Su et al., 2021).
m
g
P
c
m
t
c
p
w
t
w

the density is consistent. Based on the above assumptions, this
paper establishes the following transfer function.

The speed of the quantitative pump is changed by the speed
of the motor, at the same time, its displacement remains the
same, the mathematical model of the quantitative pump can be
expressed as follows.

Qp = Vpnp − CtpPh (1)

where Qp is the flow rates for fixed displacement pump, Vp is the
isplacement of fixed volume pump, np is the speed of the fixed
isplacement pump, Ctp is the internal leakage coefficient of fixed
isplacement pump, Ph is the pressure of the high-pressure tube
f the fixed displacement pump.
The mathematical model of a variable displacement motor can

e expressed as follows.

m = Vmnm − CtmPh (2)

here Qm is the variable motor flow, Vm is the displacement of
ariable motor, nm is the speed of variable displacement motor,
tm is the internal leakage coefficient of variable displacement
otor.
The mathematical model of the hydraulic system piping can

e expressed as follows:

p − Qm =
V0dPs
Bedt

(3)

where Qp is the flow rates for fixed displacement pump, Vo is
the volume of the line between pump and motor Be is the bulk
modulus of elasticity of hydraulic oil.

The mathematical model of the coupled fixed displacement
pump, variable motor, and hydraulic system piping yields.

Vpnp − Vmnm =
V0dPs
Bedt

+ (Ctp − Ctm)Ps (4)

The transform is applied to the equation.

Vp∆np − Vm∆nm = (
V0

Be
s + Ctp − Ctm)∆Ps (5)

At the same time, the balance equation for the variable motor
torque is as follows.

VmPs = T + Jm
dnm

dt
+ Bmnm (6)

The Laplace transform is applied to the equation.

Vm∆Ps = ∆T + 2π Jms∆nm + 2πBm∆nm (7)

Combining the two equations gives the following transfer func-
tion between motor speed, motor displacement and pump speed.

∆nm =

VmVp∆np
V2
m

−
Ct
V2
m
(1 +

V0
CtBe

s)∆T
JV0 s2 + ( JCt +

BmV0 )s + 1
(8)
BeV2
m V2

m BeV2
m

13826
The load torque balance equation for a variable motor is as
follows:

VmPh = T + 2π Jm
dnm

dt
+ 2πBmnm (9)

where T is the external load torque acting on the variable motor
shaft, Jm is the rotational inertia of variable motors, Bm is the
viscous damping coefficient.

2.2. Deep learning predictive models

The feed-forward control volume in the above hydraulic trans-
mission and control power generation equipment is analyzed.
This paper ignores the volume and leakage of the pipeline be-
tween the dosing pump and the variable motor and considers the
internal leakage coefficient of the pump and the variable motor
as 0. Then the mathematical model of the hydraulic system can
be expressed as:

ωtVp = ωmVm (10)

Therefore, the feed-forward control amount can be set as
follows:

Vm =
ωtVp

ωm
(11)

However, in the actual system, when the change in ocean
current flow rate causes the pump speed to change, the transfer
function of the system regarding the pump speed is as follows,
with higher order differential links and inertia links. The rigidity
of the overall system is influenced by the frequency of the change
in speed, where parameters such as the internal leakage coeffi-
cient of the dosing pump and variable motor and the volume in
the pipeline all have an effect on the dynamic accuracy of the
pump speed.

∆nm

∆T
=

−
Ct
V2
m
(1 +

V0
CtBe

s)

s2

ω2
h

+
2ζ
ωh

s + 1
(12)

According to the above analysis, based on the above mathe-
atical model of the hydraulic transmission and control power
eneration system, the traditional control algorithm feedforward
ID algorithm whose constant frequency control dynamic ac-
uracy does not reach the ideal value. The reason for this is
ainly due to the unreasonable setting of the feed-forward con-

rol amount. In order to solve this problem, this topic uses a
onstant-frequency control algorithm based on a deep learning
rediction model to provide a correction value for the feedfor-
ard control quantity. By predicting the future motor speed at
ime k based on the deep learning prediction model, the feedfor-
ard control amount is corrected by comparing it with the target
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Fig. 3. Block diagram of a constant frequency control algorithm based on a deep
earning predictive model.

alue of the motor speed via the controller. This paper focuses on
eep learning algorithms through LSTM, CNN and EWT, and the
bove three algorithms will be studied in detail in subsequent
hapters. In addition, Back-Propagation Neural Network (BPNN)
nd Deep Belief Network (DBN) algorithms are also commonly
sed deep learning algorithms. Due to BPNN’s superior non-linear
apping, generalization, and self-learning capabilities, it has been
hown that it is frequently utilized in the field of engineering
ptimization. The BPNN training period is overly long due to
n abundance of training data. It just uses one cluster to train
he BPNN model and treats the clustering’s center as the label.
herefore, accurate information might be lost in other clusters.
he DBN is a deep neural network that has numerous layers of
idden cells. It may also be thought of as a graphical model that
s stacked with different Restricted Boltzmann Machines (RBMs).
he control algorithm schematic and block diagram are shown in
ig. 3.
The design of the compensating controller for the feed-forward

ontrol quantity, where deviations in pump speed still exist under
eed-forward control, is as follows.

ω = ωpredict
m − ωm (13)

where is ωm the set values and ω
predict
m is the predicted value.

Expanding the above equation can be written as:

∆ω =
Vpωp

Vm + V T
m

−
Vpωp

Vm
(14)

T
m = −

∆ωV 2
m

Vpωp + ∆ωVm
(15)

here V T
m is the compensated motor displacement.

The control signal converted to variable motor displacement
is as follows.

s = −
cmax − cmin

Vmax
m

× (Vm −
∆ωV 2

m

Vpωp + ∆ωVm
) + cmax (16)

.3. Basic idea of the EWT-LSTM-CNN algorithm

In this paper, the LSTM algorithm is used as the basis of
he model. To overcome the shortcoming that the LSM model
arameters cannot extract features at scales other than the time
cale, the CNN is used to optimize the influence factor feature
election of the LSTM model and to construct an EWT-LSTM-
NN based model for predicting the sea current flow rate. The
lgorithm uses CNN neural networks for feature extraction of
he influence factors of the data. At the same time, the EWT
lgorithm is used to extract the different modal information in
he load data to maximize the retention of feature information
13827
in the current velocity series, thus improving the accuracy of the
prediction model. The flow chart of the EWT-LSTM-CNN predic-
tion algorithm is shown in Fig. 4. The specific steps are described
as follows.

(1) Firstly, the ocean current velocity data is pre-processed,
including missing data processing, text data quantization process-
ing, and data normalization processing.

(2) The CNN network is used to convolve the load sequences
containing the influence factors to extract the features of the
influence factors and obtain the local correlation between the
current velocity data.

(3) EWT is used to decompose the current velocity prediction
to obtain the modal feature information of the current velocity
data at different scales.

(4) The component LSTM prediction model is established by
forming the corresponding input matrices from the influence
factor feature series and each modal component.

(5) The prediction structure of each component LSTM model
is reconstructed to obtain the final EWT-LSTM-CNN prediction
results.

3. Research on constant frequency control algorithm based on
deep learning prediction model

3.1. Predictive model based on LSTM

LSTM networks are a special type of RNN and are commonly
used in time series prediction problems, where long and short
term dependencies in time series can be solved stably. The key
parameter of LSTM networks is the memory cell, which remem-
bers the past time state. LSTM networks can add or remove
information to the cell state through three control gates (in-
put gate, forget gate, and output gate) The overall architecture
is shown in Fig. 5. The computational process of the LSTM is
described as follows.

(1) When new input arrives, the input information can be
accumulated if and when the input gate is activated.

(2) If the forget gate is activated, past cell states can be ignored
in that cell.

(3) The output gate can control the latest unit output can be
propagated to the final state.

In the current flow prediction, x = (x1, x2, . . . . . . , xT ) is the
historical input data and y = (y1, y2, . . . . . . , yT ) is the predicted
data. The preset flow rate can be calculated as:

it = σ (Wixxt + Wimmt−1 + Wicct−1 + bi) (17)

t = σ (Wfxxt + Wfmmt−1 + Wfcct−1 + bf ) (18)

t = f ◦

t ct−1 + i◦t g(Wcxxt + Wcmmt−1 + bc) (19)

t = σ (Woxxt + Wommt−1 + Wocct + bo) (20)

t = o◦

t h(ct ) (21)

t = Wymmt + by (22)

here it denotes input gates, ft denotes forgetting gates, ct de-
otes activation vectors for each cell, ot denotes output gates, mt
enotes activation vectors for each memory block, W denotes the
eight matrix, b denotes the deviation vector and o denotes the
calar product.

σ (·) is a standard logic function.

(x) =
1

1 + e−x (23)

g(·) is the central logical function.

g(x) =
4

1 + e−x − 2x ∈ [−2, 2] (24)



H. Wei, W. Su and J. Shi Energy Reports 8 (2022) 13824–13836

m
a
b
c
i

Fig. 4. Flow chart of EWT-LSTM-CNN based prediction model.
Fig. 5. Overall architecture of the network based on LSTM neural networks.

h(·) is the central logical function.

h(x) =
2

1 + e−x − 2x ∈ [−1, 1] (25)

The test set was selected and pump speed predictions were
ade, as shown in Fig. 6. Where the actual values are in blue
nd the predicted values are in orange. The average absolute error
etween the predicted and actual values is 6.05 r/min. The time
ost of a single prediction is 0.001 s. The root mean square error
s 2144.92.
13828
Fig. 6. Predicted and actual pump speed values based on LSTM neural networks.
(For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

3.2. Predictive models based on CNN convolutional layers

The 1D-CNN one-dimensional convolutional neural network is
also widely used in time series prediction problems and its main
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H
t

Fig. 7. Overall architecture of a 1D-CNN neural network based network.

Fig. 8. Predicted and actual values of pump speed based on 1D-CNN neural
network. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

feature is its relatively low time cost. In order to take into account
information from previous temporal data, the inputs are set to
data from a past period. If there is more than one input data,
the input vectors will be superimposed in the channel direction.
C (k−1) is the number of channels in the kth convolution layer and

is the size of the filter. The activation function is ReLU. Thus,
he convolution process for the ith filter is expressed as
13829
h(k)
ij = φ(

c(k−1)∑
p=1

ω

H∑
q=1

w
(k)
ipqx

(k)
p,j+q + b(k)

i ) (26)

where w
(k)
ipq is the filter weights, b(k)

i is the filter bias. x(k)
p,j+q is

the inputs to the layer. The number of filters in each layer is
16, 32 and 64, and H is set to 3. A sliding filter with a stride
width of 1 is set to perform the convolution operation. After three
convolution layers, the created feature map is fed to the fully
connected output layer. The loss function here is the squared
error.

Based on the above parameters, the following one-dimensional
convolutional neural network was designed by training the pump
speed and sensor information under feedforward control, where
the overall architecture of the network and the number of neural
unit nodes are shown in Fig. 7.

The pump speed prediction by taking the test set is shown
in Fig. 8, where the actual values are in blue and the predicted
values are in orange. The average absolute error between the
predicted and actual values is 10.49 r/min. The time cost of
a single prediction is 0.0029 s. The root mean square error is
2086.41. The prediction accuracy is reduced compared to the
LSTM neural network, but the time cost of a single prediction is
reduced.

3.3. Predictive models based on EWT-LSTM-CNN

In order to combine the advantages of accurate LSTM neural
network prediction and low time cost of 1D-CNN, this paper
studies the construction of a model based on the combination
of EWT-LSTM-CNN. The whole framework of this paper, which
combines the advantages of all three, is shown in Fig. 9. It is
further described in this paper as follows.

(1) EWT was used to decompose the raw wind speed data into
several sub-layers.

(2) The LSTM network was used to predict the high-frequency
sub-layers, while the 1D-CNN neural network was used to predict
the low-frequency sub-layers.

(3) To quantify the superior performance of the EWT-LSTM-
CNN prediction model, several models were taken for compari-
son. The models compared include the fully connected model, the

LSTM model and the CNN model.
Fig. 9. Overall framework of EWT-LSTM-CNN prediction model.
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Fig. 10. The overall framework of EWT-LSTM-CNN based neural network.
Fig. 11. Predicted and actual values of motor speed based on EWT-LSTM-CNN
rediction model. (For interpretation of the references to color in this figure
egend, the reader is referred to the web version of this article.)

An EWT can be defined as a set of band-pass filters selected
ccording to the spectral characteristics of a signal. In order
o determine the frequency range of the band pass filters, the
ourier spectrum of the signal is segmented and the EWT can
ffectively identify and extract a finite number of intrinsic modes
f a system.
For flow time series, the main steps of the EWT algorithm are

1) expanding the signal, (2) performing the Fourier transform
orm, (3) extracting the boundaries, (4) constructing the filter
ank, and (5) extracting the sub-bands.
The information from the pump speed and sensors under

eedforward control is trained and the following EWT-LSTM-CNN
eural network is designed in this paper. The overall architecture
f the network is shown in Fig. 10.
The pump speed predictions are shown in Fig. 11, where

he actual values are in blue and the predicted values are in
range. The average absolute error between the predicted and
ctual values is 5.31 r/min. The time cost of a single prediction
s 0.046 s. The root mean square error is 1955.30. Compared
o the commonly used short-term memory neural network, the
13830
Fig. 12. Motor speed profile based on a deep learning predictive model.

prediction accuracy is improved by 12.26% and the time cost of
a single prediction is also less than the sampling time of the
constant frequency control algorithm.

4. AMESim and simulik simulation of hydraulic transmission
and control power generation equipment system

4.1. Joint simulation based on AMESim and simulink

A deep learning predictive model based on EWT-LSTM-CNN
is introduced in AMESim and Simulink, and a compensated con-
troller is implemented. The above control algorithm allows the
variation of pump speed in a hydraulic transmission control sys-
tem to be obtained. In this paper, the dynamic accuracy is calcu-
lated by taking the variation of pump speed from 400–700 s, and
the dynamic accuracy is compared with the traditional constant
frequency control algorithm as shown in Fig. 12.

In summary, the dynamic accuracy of the motor speed with
the deep learning predictive model-based constant frequency
control algorithm is 0.3%, which is a 90% improvement com-
pared to the dynamic accuracy of the motor speed with the
feed-forward PID control algorithm.
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Fig. 13. Operating interface of the hydroelectric power generation system for ocean currents.
Fig. 14. Status monitoring interface for hydroelectric power generation systems.
.2. Control system design for deep learning constant frequency
ontrol

The main functions of the control system of the hydraulic
ransmission and control power generation equipment are imple-
ented in two main ways: automatic mode and manual mode.
his is shown in Fig. 13.
The main functions implemented in this system include sim-

lation of speed, oil replenishment, system unloading, cooling
il circuit control, constant speed control, and operating status
onitoring (pump speed, motor speed, pump outlet pressure,
otor inlet pressure, system flow), as shown in Fig. 14. The
roject uses a three-tier control system, with Programmable Logic
ontroller PLC1 and PLC2 controlling each of the three hard-
are systems of the hydraulic transmission and control power
eneration equipment.
The communicates with the Inter-Process Communication

IPC) via Transmission Control Protocol/Internet Protocol (TCP/IP)
rotocol to obtain the sensor parameters of the hydraulic sys-
em and visualize the data in real time. In addition, this paper
ocuses on running some deep learning prediction models. The
ore computationally intensive calculations in the constant fre-
uency control algorithm are sent to the IPC side, which in

urn calls its Application Programming Interface (API) on the

13831
PLC to achieve high precision constant frequency control, as
shown in Fig. 15. The PC side integrates the following functions:
project construction, network communication connection, data
acquisition, data processing, training of deep learning prediction
models and constant frequency control. In order to efficiently and
stably implement these functions as above, this paper designs
the control software on the PC side based on a multi-process
approach.

5. Experimental study of hydraulic constant frequency control
algorithms

5.1. Test equipment

The hydraulic transmission and power generation test bench
is used to carry out experimental research on constant frequency
control algorithms. The system power of this test bench is 50 kW
and the whole test bench consists of three main parts: the speed
simulation system, the hydraulic transmission and control power
generation system, and the cooling, and oil change system. This
is shown in Fig. 16.

The main technical parameters of hydraulic transmission and
power generation test bench are shown in Table 1, which is

arranged in a 2-tow-2 distributed configuration.
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Fig. 15. Block diagram of the main control algorithm of the system.
Fig. 16. Hydraulic power transmission and control test bench. 1-speed simulation system. 2-hydraulic transmission and control of power generation system.
-hydraulic cooling oil change system.
Through the speed simulation system, combined with
imulink simulation of the turbine output characteristics, this
aper can simulate the speed variation of the turbine under
he change of ocean current flow velocity through the inverter
nd motor. The core components of this include inverter, motor,
educer, and coupling, as shown in Fig. 17.

The core components of the hydraulically controlled power
eneration system, shown in Fig. 18, include components such
s dosing pumps, variable motors, valve blocks, proportional am-
lifiers and hydraulic oil circuits. When the turbine speed varia-
ion is simulated by the speed simulation system, the hydraulic
ransmission and control system is used to keep the generator
peed and the variable motor speed constant (generator and vari-
ble motor are rigidly connected) to achieve high quality power
eneration.

.2. Experimental data acquisition

In order to conduct an experimental study of a constant fre-
uency control algorithm for deep learning predictive models,
xperimental data is first collected and a training set is con-
tructed. The training set is used to train the deep learning model.
he network communication module and the data acquisition
odule are run to collect the values of each sensor within the
ydraulic system. As PC software development is based on a
ulti-process approach, there is a separate memory space and
nvironment space between multiple processes. In order to visu-
lize the collected data in the interface processes, inter-process
ommunication techniques are used. In contrast to other inter-
rocess communication methods, shared memory can be read
13832
Table 1
Technical parameter of the ocean current energy hydraulic transmission and
control power generation system.
Technical parameter Parameter value

Hydraulic system pressure (MPa) 21
Hydraulic pump speed range (r/min) 30∼100
Setting value for hydraulic motor speed (r/min) 1500
Safety valve pressure (MPa) 30
Refill oil system pressure (MPa) 4
Controlling oil pressure (MPa) 3
Hydraulic system flow (l/min) 0∼180
Refill oil system flow rate (l/min) 30

and written directly to memory and does not require any data
copying. The data acquisition module communicates with the PLC
via the ModBus protocol and the PC side communicates with the
IPC via the TCP/IP protocol. The IPC and PC side are based on
Labview and Python for network communication respectively.

The hydraulic pump speed and motor speed over a 100 min
period, as shown in Fig. 19(a) and (b), show the speed status of
the power and actuator components of the hydraulic system. The
output pressure of the hydraulic pump and the input pressure
of the hydraulic motor over a period of 100 min reflect the
pressure state of the hydraulic system as shown in Fig. 19(c) and
19 (d). The hydraulic motor displacement variation curve and the
hydraulic system flow rate curve over a 100 min period reflects
the system flow rate variation as shown in Fig. 19(e) and (f).
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Fig. 17. Turbine speed simulation system.
Fig. 18. Hydraulic energy transfer power generation system.
.3. Experimental results

The data processing and model training modules were run to
rain and tune the sensor signals to obtain a deep learning pre-
iction model suitable for this bench, the experimental process is
hown in Fig. 20.
Experiments with feedforward control algorithms, feedfor-

ard PID control algorithms and control algorithms based on
eep learning predictive models for constant frequency control
ere run separately, and the motor speed under these algo-
ithm conditions for the 400 s–1000 s time period is shown in
igs. 21–23.
The constant frequency control algorithm based on the deep

earning EWT-LSTM-CNN predictive model for the 400–1000 s
ime period on the motor speed has an average value of 1500.17
nd an STD standard deviation of 7.73, which improves the STD
tandard deviation index by 78.11% compared to the feed-forward
ID algorithm. The simulation study of the algorithm verifies
hat the constant frequency control algorithm based on the EWT-
STM-CNN prediction model can effectively improve the dynamic
ccuracy of the constant frequency of the motor of the hydraulic
ransmission control power generation equipment and thus im-

rove the quality of the system power generation.

13833
6. Discussion

In this paper, some parameters in the constant-frequency con-
trol algorithm based on a deep learning prediction model are
adjusted and further tuned and optimized for the experimental
bench. The research content of this paper realizes efficient ab-
sorption and conversion technology of unsteady ocean current
energy to achieve continuous and efficient power generation
and high-quality power generation, solving the problem of self-
sufficiency of underwater sensor power and meeting the power
supply needs of underwater observation platforms and other
equipment in some sea areas. At the same time, it can also
provide stable electricity for remote islands. Due to the limita-
tion of the controller’s arithmetic power, it is not possible to
improve the constant frequency dynamic accuracy by shortening
its sampling time, and it is not possible to run a deep learning
prediction model with better prediction results on it. If these
two problems can be solved effectively, the control effect will be
further improved.

7. Conclusion

Hydraulic transmission-controlled power generation systems
drive synchronous generator rotation directly through hydraulic
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Fig. 19. Acquisition of the values of the parameters of the hydraulic transmission and control test bench.
Fig. 20. Experimental procedure for model training.

motors, and the accuracy of the hydraulic motor speed deter-

mines the generator generation frequency (i.e. the quality of

13834
power generation). In this paper, the quality of power generation
is achieved through a deep learning algorithm, which realizes
accurate control of the hydraulic motor at a constant speed under
non-stationary strongly coupled excitation in multiple dimen-
sions such as turbine speed and motor load torque.

(1) This paper analyzes the mathematical model of the hy-
draulic transmission and control system and proposes a constant
frequency control algorithm based on a deep learning EWT-LSTM-
CNN prediction model to further improve the dynamic accuracy
of the motor speed.

(2) According to the 50 kw hydraulic transmission and control
power generation equipment, a joint simulation platform based
on AMESim and Simulink is constructed in this paper.

(3) The deep learning prediction model of EWT-LSTM-CNN
constructed in this paper improved the prediction accuracy by
12.26% compared to the commonly used short-term memory
neural networks. Moreover, the time cost of a single prediction is
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Fig. 21. Motor speed profile based on feed-forward control algorithm.

Fig. 22. Motor speed profile based on feed-forward PID control algorithm.

Fig. 23. Motor speed profile under EWT-LSTM-CNN predictive model based
onstant frequency control algorithm.

maller than the sampling time of the constant frequency control
lgorithm.
(4) By simulating the constant frequency control algorithm

hrough the simulation model, the dynamic accuracy of the motor
peed under the constant frequency control algorithm based on
he deep learning prediction model in this paper is 0.3%, which
13835
is 90% better than the dynamic accuracy of the motor speed
under the feed-forward PID control algorithm, and can effectively
improve the quality of the system’s power generation.

(5) This paper investigates the deep learning constant fre-
quency control algorithm using a 50 kW hydraulic transmission
control test bench. The maximum deviation of the motor speed
based on the deep learning predictive model is 34.17 and the
STD standard deviation is 7.73 in the time period of 400–1000 s.
Compared with the feed-forward PID algorithm, the STD standard
deviation index of the deep learning algorithm is improved by
78.11% and the maximum deviation is reduced by 86.10%. This
paper validates the simulation study of the algorithm, and the
constant frequency control algorithm based on the deep learning
prediction model can effectively improve the dynamic accuracy
of the constant frequency of the motor of the hydraulic transmis-
sion control power generation equipment, and then improve the
quality of the system power generation.
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